Ortho Clinical Diagnostics

A Transfusion Reaction
What Do I Do Now?

Judith A. Sullivan, MS, MT(ASCP)SBB, CQA(ASQ)
ASCLS Region III Triennial Meeting
Birmingham AL
This promotional educational activity is brought to you by Ortho Clinical Diagnostics, Inc. and is not certified for continuing medical education. The speaker is compensated by, and presenting on behalf of, Ortho Clinical Diagnostics, Inc. and must present information in accordance with applicable FDA requirements.
Objectives

• Describe the four types of adverse reactions to blood and blood products
• Identify the most common symptoms of transfusion reactions
• Describe immediate treatment recommendations
• List some of the Transfusion Transmitted Diseases
• Describe prevention practices for each type of reaction
Definitions

• Immune – stimulation of immune system
• Non-immune – reactions do not involve recipient’s immune system
• Immediate – reactions begin in minutes
• Delayed – reactions occur months after transfusion event
Regulatory Requirements

- College of American Pathologists (CAP)
- The Joint Commission
- AABB
- COLA
- FDA
Summary of Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune</td>
<td>• Acute hemolytic reaction</td>
<td>• Delayed hemolytic reaction</td>
</tr>
<tr>
<td></td>
<td>• Febrile, non-hemolytic</td>
<td>• Graft-versus-host disease (GvHD)</td>
</tr>
<tr>
<td></td>
<td>• Allergic</td>
<td>• Alloimmunization</td>
</tr>
<tr>
<td></td>
<td>• TRALI</td>
<td></td>
</tr>
<tr>
<td>Non-Immune</td>
<td>• Bacterial Sepsis</td>
<td>• Viral infections</td>
</tr>
<tr>
<td></td>
<td>• Massive Transfusion</td>
<td>• Parasitic infections</td>
</tr>
<tr>
<td></td>
<td>• Volume Overload</td>
<td>• Iron overload</td>
</tr>
<tr>
<td></td>
<td>• Citrate Toxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non immune hemolysis</td>
<td></td>
</tr>
</tbody>
</table>
Reaction Statistics in the United States

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolytic Transfusion Reactions</td>
<td>One/40,000 transfused units of packed RBC’s</td>
</tr>
<tr>
<td>Non-hemolytic febrile and minor allergic reactions</td>
<td>Three to four percent of all transfusions</td>
</tr>
<tr>
<td>GvH disease</td>
<td>< 0.15 percent</td>
</tr>
</tbody>
</table>

Reaction Statistics in the United States

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRALI</td>
<td>0.1-0.2% of all transfusions</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>1 per 200,000-500,000 units</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>1 per 2-4 million units</td>
</tr>
<tr>
<td>HIV Infection</td>
<td>1 per 2-4 million units</td>
</tr>
</tbody>
</table>

Morbidity and Mortality

- Transfusion-related Hepatitis C causes chronic Hepatitis 50% of infected recipients
- Cirrhosis develops in 10% Hepatitis patients
- Transfusion-associated GvH disease 80-90% mortality rate
- Transfusion-related acute lung injury-mortality rate 5%

Immune:
Acute Hemolytic Transfusion Reactions

• Overall – occurs in 1/40,000 transfusions

• Misidentification causes majority of hemolytic transfusion reactions (HTR)

• Clerical errors occur 1:6,000 to 1:10,000 units

• Mistaken hospital identification occurs approximately 1:33,000

Acute Hemolytic Reaction Symptoms

Fever
- Oppressive chest pain and dyspnea after start

Chills
- Hemoglobinemia

Anxiety
- Hemoglobinuria and oliguria, followed by renal failure

Back Pain

Shock
- Jaundice - several hours to develop
- Abnormal bleeding - disseminated intravascular coagulation (DIC)

Acute Hemolytic Reaction
Immediate Treatment

• Stop transfusion
• Maintain IV access
• Supportive care
• Fluids to maintain urine flow and support blood pressure
• Diuretics and low dose dopamine
• Monitor coagulation for DIC
• Monitor for renal failure

Source: Primer of Blood Administration, Bethesda, MD™ AABB, 2012
Acute Hemolytic Reaction Follow-up

- Return unit and associated tubing to transfusion service
- Include freshly collected patient blood and urine samples

Initial Laboratory Testing

- Clerical sample and patient ID
- Repeat ABO/Rh
- Direct Antiglobulin Test (DAT)
- Check for hemolysis

Laboratory Testing

• Subsequent Laboratory Testing
• Repeat of antibody screen and crossmatch
• Urine Hb
• Serum LDH
• Bilirubin
• Haptoglobin

Hemoglobinuria
Prevention – Acute Hemolytic

- Patient identification
 - Samples
 - Transfusion Administration
- Laboratory testing
 - Performed on properly labeled sample
- Product retrieval from Blood Bank
 - Retrieval form has correct patient identification
 - Product tag matches with retrieval form and computer information
- Bedside verification
 - 2 person verification that the product is correct for patient

Immune – Febrile Non-hemolytic Reaction

• Most common adverse effect of transfusion
• 3-4% of transfusions
• Begins within minutes to hours of transfusion

Febrile Non-hemolytic Reaction Symptoms

- Increase in temperature of greater than 1°C or 2°Fahrenheit
- Symptoms include: fever, chills, rigor

Febrile Non-hemolytic Initial Treatment

- Antipyretics are effective treatment
- Acetaminophen (Tylenol, Panadol)
- Reduces fever

Febrile Non-hemolytic Clinical Follow-up

- Clerical check
- Plasma evaluation
- ABO/Rh
- DAT

Prevention – Febrile Reaction

- Use of leukoreduced blood products
- Pre-medicate patient with history of febrile reactions
- Antipyretics
- Acetaminophen

Immune – Allergic Reactions

- Minor allergic reaction
 - Rash/Hives (Urticaria)/Itching (pruritus)
 - With febrile reactions – 3-4% of all transfusions

- Anaphylactic
 - Respiratory distress
 - Vascular instability
 - Shock
Allergic Reactions Initial Treatment

• Antihistamines – generally effective treatment
• If symptoms resolve, no need to stop transfusion

Severe Allergic Reactions

Severe (i.e. anaphylaxis) usually in IgA deficient

- Facial edema
- Dyspnea
- Tight itching throat
- Bronchoconstriction including cough
- Nausea, vomiting, diarrhea, hypotension, arrhythmia

Severe Allergic Reactions Treatment

- Stop transfusion
- Volume expanders
- Epinephrine
- Corticosteroids
- Oxygen

Prevention – Allergic Reactions

- Severe allergic
 - Wash all cell products to remove plasma
 - IgA deficient plasma donors
- Less severe
 - Pre-medicate with antihistamines

Immune – Transfusion Related Acute Lung Injury (TRALI)

- Non-cardiogenic pulmonary edema
- First described in 1985
- True incidence is unknown
 - Estimates vary widely
 - 1:432 - 1:88,000/platelet transfusion
 - 1:4,000 to 1:557,000/red blood cell unit
 - Most literature supports 1:5,000
 - Increased plasma = increased risk

TRALI Symptoms

- Pulmonary edema with hypoxia
- Bilateral infiltrates on frontal chest radiograph
- ≤ 6 hours after transfusion; no other cause identified
- Symptoms of pulmonary edema with normal left ventricular filling pressure

TRALI Symptoms

• Mimic Acute Respiratory Distress Syndrome
 • Severe pulmonary distress
 • Ventilation/BP support required
 • White-out on chest X-ray

• Resolution without sequela in a couple of days
TRALI Example
TRALI Initial Treatment

- Diuretics
 - Not indicated – even deleterious
- Steroids
 - Not clearly helpful
- Antibiotics – for high fever and/or circulatory collapse

- Supportive care
 - Supplemental oxygen
 - Mechanical ventilation
- Circulatory support
 - Fluids
 - Inotrope support
- ICU care if needed

TRALI Prevention

• Best Treatment
• Blood Center Activities
• Reduce plasma products collected from multiparous females
• HLA testing

Immune – Delayed Hemolytic Reaction

- Hemoglobin concentration drops unexpectedly
- Fever
- Jaundice appears 5-10 days post transfusion
- Sensitized through transfusion or pregnancy
- Antibodies cause destruction
 - Starts 4-7 days post transfusion

Delayed Hemolytic Reaction

• Treatment
 • Monitor the patient’s urine output and renal function

• Laboratory Testing
 • Fresh blood sample
 • ABO/Rh, DAT
 • Antibody Screen and ID

• Prevention
 • Provide antigen negative blood for future transfusions

Immune – Transfusion Associated Graft vs. Host Disease (TA-GvHD)

• TA-GvHD is rare <0.15%
• Donor lymphocytes can’t be eliminated by the recipient
• Minimum number of lymphocytes required for TA-GvHD unknown

Treatment of GvHD

• Suppress the immune response
 • Methotrexate
 • Cyclosporine
 • Corticosteroids

Prevention of GvHD Gamma Irradiation

• Irradiation damages DNA in donor lymphocytes rendering them incompetent

• Pathogen reduction
Non-immune – Hemolysis

- Mechanical
- Use of roller pumps (cardiac bypass surgery)
- Pressure infusion pumps
- Small bore needle

Non-immune – Hemolysis

- Thermal
- Unit exposed to improper temperatures
- Malfunctioning blood warmers
- Hypotonic Solutions
- Addition of drugs or hypotonic solutions
- Inadequate deglycerolization

Prevention – Non-immune Hemolysis

- Proper administration
- Blood warmers work properly
- No “creative warming”
- No drugs or hypotonic solutions used with transfusion
- Proper storage and thawing of frozen blood

Non-immune – Transfusion Associated Cardiac Overload (TACO)

- Elderly and infants are most susceptible
- Dyspnea
 - Protruding neck veins
 - Pulmonary edema
 - Systolic hypertension
 - Cardiac failure
- Treatment
 - Diuretics

TACO Prevention

- Slow infusion
- Split units

Non-immune – Transfusion Transmitted Diseases (TTD)

• Bacterial
• Viral
• Parasitic
• Prion
Immediate – Bacterial Sepsis

- Caused by gram-negative and gram-positive bacteria
- Occurs most often with platelet transfusion

Bacterial Sepsis Symptoms

- Hyperpyrexia
- Red body rash
- Chills
- Acute shock

Most common infectious source of morbidity and mortality related to transfusion.

Bacterial Sepsis Initial Treatment

- Immediately discontinue transfusion
- Save transfusion materials for cultures
- Preserve venous access
- Collect appropriate blood cultures
- Treat with intravenous broad-spectrum antibiotics
- Treat for shock, renal failure and DIC, as needed

Prevention – Bacterial Sepsis

• Donor Selection
 • Donors well and healthy
 • Off of antibiotics for 3 days prior to donation
• Collection of blood
 • Arm scrub
• Component Preparation
 • Use of properly maintained sterile connecting devices
• Bacterial Detection
 • Platelet products
• Pathogen reduction

Viral Diseases –
Occurs 1 in 2-4 million units

Hepatitis
Hepatitis C
HIV

Viral Diseases

• CMV
 • Normal healthy individuals
 • Immune compromised
• Prevention
 • Leukoreduction
 • Sero-negative

Other Transfusion Transmitted Diseases

- **Viral**
 - HTLV-I/II
 - West Nile
 - Zika
- **Prion – CJD**
- **Parasitic –**
 - Babesiosis
 - Chagas
 - Malaria

West Nile Virus

• Mosquito bite
• Mild illness – West Nile fever
• Over 50 years of age – higher risk of serious illness
• WNV encephalitis or meningitis
• Prevention strategies
 • Cover up
 • Insect repellant

Babesiosis – Malaria Like Illness

- Caused by *Babesia microti*, from the bite of an infected deer tick
- More common in the Northeast and upper Midwest; appears to be spreading
- Currently, there is no licensed test for blood screening

Malaria

• Caused by several species of the *Plasmodium* genus; risk in the U.S. is estimated at 0.25 cases per million transfusions

• Donors with a history of travel to malarial endemic areas are deferred.

Chagas’

• Caused by *Trypanosoma Cruzi* infection
 • Endemic to portions of Mexico, Central and South America
 • Relatively high frequency in Texas and California reflecting patterns of immigration
 • Infection with *T Cruzi* may be asymptomatic for years, but can eventually progress to presentation of cardiac or gastrointestinal disease.

• Testing of blood donors was initiated in January 2007, following FDA licensure of a new screening assay.

Zika

- FDA recently approved tests for blood donations
- Travel related and endemic
- FDA Guidance
 - Testing
 - Pathogen Reduction

Source: Revised Recommendations for Reducing the Risk of Zika Virus Transmission by Blood and Blood Components FDA, August 2016
Infectious Disease Clinical Follow-up

• Evaluation of the unit
• Evaluation of the doctor
• Evaluation of the recipient
TTD – Reducing the Risk

U.S. Blood units are routinely tested for

• Hepatitis B (HBV) and C (HCV)
• HIV 1 and 2
• Human T-cell Lymphotropic Virus (HTLV) I and I
• West Nile Virus (WNV)
• Syphilis
• *Trypanosoma Cruzi*, the parasite that causes Chagas’ Disease
• Zika (ongoing)

TTD – Reducing the Risk

• Donor screening policies risk factors for infectious disease
 • Travel to malarial endemic areas
 • Travel to Zika areas
 • Travel-related exposure to New Variant Creutzfeldt-Jakob disease (CJD or “mad cow disease”)

• Platelets are now cultured for bacterial contamination prior to release

• Pathogen reduction of platelets a reality

• All of these measures and more continue to reduce the risk of acquiring transfusion transmitted diseases
Best Practices – What the Transfusionist Must Do

• Two-person bedside verification – EVERY TRANSFUSION!
 • Ensures right product to right patient
• Rate of infusion should initially be slow
• Observe patient for first 15 minutes
• Record patient’s vital signs periodically

Source: Primer of Blood Administration, Bethesda, MD” AABB, 2012.
Immediate Actions
When You Suspect a Transfusion Reaction

Do this for ALL suspected transfusion reactions

• Stop the transfusion
• Limit the amount of blood infused
• Maintain IV access

Source: Primer of Blood Administration, Bethesda, MD" AABB, 2012.
Immediate Actions – Notification

• Notify patient’s physician

• Notify Blood Bank

An order from the patient’s physician is NOT required to investigate a suspected transfusion reaction.

Source: Primer of Blood Administration, Bethesda, MD” AABB, 2012.
Immediate Actions – Reporting and Documenting

Follow facility’s requirements

• Signs and symptoms
• Notification
• Vital signs
• Clerical check

Source: Primer of Blood Administration, Bethesda, MD” AABB, 2012.
In Summary

• 40,000 units of blood transfused daily

• Prompt recognition of transfusion effects will keep our patients safe
Questions?
Thank You